((-2x^2)+5x+3)=((3x^2)+5x-3)

Simple and best practice solution for ((-2x^2)+5x+3)=((3x^2)+5x-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for ((-2x^2)+5x+3)=((3x^2)+5x-3) equation:



((-2x^2)+5x+3)=((3x^2)+5x-3)
We move all terms to the left:
((-2x^2)+5x+3)-(((3x^2)+5x-3))=0
We calculate terms in parentheses: +((-2x^2)+5x+3), so:
(-2x^2)+5x+3
We get rid of parentheses
-2x^2+5x+3
Back to the equation:
+(-2x^2+5x+3)
We calculate terms in parentheses: -((3x^2+5x-3)), so:
(3x^2+5x-3)
We get rid of parentheses
3x^2+5x-3
Back to the equation:
-(3x^2+5x-3)
We get rid of parentheses
-2x^2-3x^2+5x-5x+3+3=0
We add all the numbers together, and all the variables
-5x^2+6=0
a = -5; b = 0; c = +6;
Δ = b2-4ac
Δ = 02-4·(-5)·6
Δ = 120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{120}=\sqrt{4*30}=\sqrt{4}*\sqrt{30}=2\sqrt{30}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{30}}{2*-5}=\frac{0-2\sqrt{30}}{-10} =-\frac{2\sqrt{30}}{-10} =-\frac{\sqrt{30}}{-5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{30}}{2*-5}=\frac{0+2\sqrt{30}}{-10} =\frac{2\sqrt{30}}{-10} =\frac{\sqrt{30}}{-5} $

See similar equations:

| 3(3x+7=-3(-4x) | | 5x-30=8x-84 | | 9x-9-12=8x+8-6+x | | 5x−30=8x−84 | | -12d+8d=12 | | -12d+8d=12d | | 26=4x+11 | | 5x−30=84−8x | | -3(4n+2)=-4n+-2(4n-6) | | 4^3x^2-4x-4=1/1024 | | -6y/5=12 | | -18+w=-17 | | 3u=-9/5 | | -18-3t=-6t | | 4x-7=6x+9-2x | | -12−19u=-17u | | 2j-13j=15 | | v-17/1=-2 | | 41=31+2p | | -17u=(-12)−19u | | -7(f+8)=91 | | 34=20+2p | | -17u=-12−19u | | -(x-1)=x-21 | | 13t=12t+17 | | 38=20+9s | | 20+20s=10s | | -3(5x+8)=3-12x | | 38=9+20s | | 24=14+1p | | c-17/3=1 | | 42=2+1k |

Equations solver categories